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Abstract—The energy equation describing nongray radiation transfer and simuitaneous turbulent diffusion
in a layer of molecular gas enclosed by parallel black walls is developed into a linear integral equation
with symmetric kernel. The solutions for temperature and convective and radiative heat flux profiles are
strictly valid for constant volume heat source, but are good approximations to those for established turbu-
lent flow. The results show the effect of self-absorption by cold gas in the vicinity of the wall and the
coupling between nongray radiation and turbulent diffusion. A correlation of the results in general dimen-
sionless form makes it possible to calculate readily the effects of turbulent boundary layer blockage

of nongray gas radiation from any of a number of common gases.

NOMENCLATURE k, Boltzmann constant, k¥ = 1-3805
total band absorption [cm™!]; x 1076 erg/K;
slab band absorptance [dimension-. L, path length[m];
less]: m, total number of subdivisions;
defined in Appendix; Nu, Nusselt number ;
Mei and Squire constant = 3-4; P, dimensionless temperature gradient;
Planck black body spectral radiosity Pr, Prandtl number;
[W/m?cm™!]; q, heat flux [W/m?];
skin friction coefficient ; 0, volume heat release [W/m3];
specific heat at constant pressure R,I,J,,,, radiation conductance to molecular
[Ws/gmK]; conductance parameter, defined by
speed of light, ¢ = 2998 x 10'° equation (18);
[em/s]; R, turbulent Reynolds number ;
channel emittance factor, defined by Rep,, Reynolds number based on hydraulic
equation (27); diameter;
line spacing [cm™!]; S*, zeroth moment of slab band ab-
a dimensionless grouping defined by sorptance;
equation (15); t, optical depth at maximum absorption
hydraulic diameter [m] ; in band;
exponential integral function of order T, temperature (K] ;
n; T*, dimensionless temperature, defined
defined in Appendix; by equation (16);
Planck’s constant, h = 6626 x 10727 T, volume average temperature [K];
[erg-s]; v, a constant; also velocity;
molecular  thermal conductivity W, dimensionless weighting ratio defined
[W/mK]; by equation (20);
Von Karman constant = 0-40; ¥, distance from wall [m];
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y* dimensionless distance defined by
equation (3);
¥, dimensionless distance y/é;
z*, dimensionless distance transformed

to logarithmic scale by equation (17).

Greek letters

o, integrated band intensity [cm™!/
gm~?];
7, line width, [cm~!]; also Euler—

Mascheroni constant = 0-5772156. .. .;
0, half thickness of gas layer [m] ;

0;,  Kronecker delta;

& eddy diffusivity of heat [m?/s];

gt dimensionless eddy diffusivity;

U, micron, also viscosity [g/m s] ;

v, wavenumber ;

Vis band center or band head of the kth
band;

7, 3-1415927.. . .;

p, density of gas [g/m3];

T, optical depth at maximum absorption
in band;

w, bandwidth parameter [cm~1].

Subscripts

BL, boundary layer;

C, convective ;

cl, centerline;

H, band head or band center;

i, ith location;

Js jth location;

k, kth band;

0, from spectral quadrature;

R, radiative;

s; slab;

T total;

t, turbulent ;

v, volume;

w, wall;

v, spectral.

Overscore

- average.
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INTRODUCTION

THE HEAT transfer to a wall of a furnace
combustion chamber from a hot turbulent gas
contained within the chamber is usually com-
puted by adding a radiative flux to a convective
one. The former is calculated by treating the gas
as isothermal at a bulk average temperature
with temperature jump between the gas and
wall. The latter is found from a convective
Nusselt number. In short, the radiative flux is
found as though there were infinite convective
transport within the gas but none at the wall so
that the gas is isothermal, while the convective
transport at the wall is found as though the
radiation mechanism were inoperative.

Qualitatively it is known that the calculations
sketched above are naive, because, in reality,
the convective transport lowers the temperature
of the gas near the wall, and this cold layer of
gas in turn decreases the radiative transport,
acting somewhat as a shield against the hot gas
radiation. However, the energy deposited in
the cold layer should steepen the wall gradient
and thus increase the convective transport. The
question then arises: How much does a tur-
bulent, cold gas layer decrease radiative trans-
port by absorption, and how much of the
absorbed radiation flux reappears at the wall
as increased convective transport?

A complicating factor is the nature of mole-
cular gas radiation, which occurs in parts of
the spectrum called bands. At spectral positions
of the maximum absorption in gas radiation
bands, the photon mean free path may be only
a millimeter or less, with the result that a cold
layer is indeed effective in blocking radiation
transfer to the wall. But in the band wings the
photon mean free path is very large, at one
spectral location large enough for a layer near
the wall to be virtually transparent, and, at
another further out in the band wing, so large
that the entire combustion chamber volume is
virtually transparent. The nongray radiative
transfer occurs mainly in narrow spectral
regions where the wall layer is optically thin or
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transparent but in which the radiating volume
is optically thick.

It is the purpose of this paper to explore the
interaction of radiation with turbulent trans-
port. For the sake of simplicity a turbulent
gas layer with constant volume heat source is
imagined enclosed between two black plane
parallel walls. The gas contains nongray bands
modeled by exponential decay of the absorption
coefficient with spectral position removed from
that of maximum absorption.

LITERATURE SURVEY

Previous investigations for the case of pure
conduction (or laminar Couette flow) and gray
radiation have been reviewed bv Cess [1] and
Viskanta [2]. For a boundary ayer flow Cess
argued that “the maximum effect that radiation
can exert upon the convective process is to
reduce ... the Nusselt number from that for a
uniform surface heat rate to the value for a
uniform surface temperature. If the flow is
turbulent, this difference is only about 4 per
cent, and it may therefore be concluded that
for turbulent flow across a flat plate any
radiation effects upon the surface boundary
condition will have a slight effect upon the
(convective) Nusselt number.”

Cess, Mighdoll and Tiwari [3] examined the
case of simultaneous radiation and molecular
conduction between infinite black parallel plates
enclosing a molecular gas with a single ex-
ponential winged vibration-rotation band and
with a uniform volume heat source. It will be
recognized that this physical arrangement is
exactly the one analyzed herein, without tur-
bulence. A substitute kernel was employed, and
the governing equation was solved by quadratic
and quartic colocation for the case of CO gas.
A result of significance to the present study was
the corroboration of an observation based upon
single-line-of-sight calculations [4] that line
shape, as manifested by the line width to
spacing ratio, was of secondary importance to
band shape, as manifested by a band decay
spectral width @ or A,, when the optical depth
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at the band head or center was large. (This
behavior is not because “the wings possess a
more continuous structure”’, attributed by {3]
to [4], but because the band absorption dA/
d(pL) = w/(pL) is independent of y/d when
pL is large.)

Reference [3] built upon the work of Gille
and Goody [5] and Wang [6] who showed that
plane parallel problems with small temperature
differences can be formulated in terms of a
“modified emissivity”, namely the ‘‘internal
total emissivity” formed by weighting spectral
emissivity by the partial derivative of Planck
function with respect to temperature.

Greif and Habib [7] solved for temperature
profiles and heat transfer in the turbulent
channel flow of an optically thin radiating gas
with small temperature differences enclosed by
black walls. A substitute kernel was used as in
the case of Cess et al., and the assumption of
small optical depth permitted the simplification
of the kernel and facilitated obtaining the
solution. Prior studies of turbulent flow in
cylindrical ducts were made by Nichols [8] and
Landram, Greif and Habib [9].

A slab band absorptance function [10] has
been shown to lead to a compact formulation of
radiative transfer in a nongray, nonisothermal
molecular gas. The blockage effect of a cold
boundary layer was evaluated for a simple
straight line boundary layer temperature pro-
file, and recommendations based upon prior
work [4] were given for laminar channel flow.
Blockage by a turbulent boundary layer was
not established.

THEORY
Figure 1 shows the physical arrangement
postulated. A gas layer of thickness 2§ exists
between two plane parallel black walls. A
constant volume heat release occurs. An eddy
diffusivity for heat ¢ is taken to be given by the
Van Driest law of the wall [11].

k
&g =—=Pr, Pr; '{(3[1 + 4K?y*?
pe,

x (1 —exp(—y*/A*WI¥ -5}, (1)
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where K is the Von Karman constant 0-40, and
A* is 26. Since the object of the investigation is
to examine radiation-turbulent-diffusion inter-
actions, the product Pr, Pr; ! is taken equal to
unity to simplify the expression. This approxi-
mation is exact when Pr,, is somewhat greater

BLACK WALL
LLLL . LLLLLL Z

TURBULENT GAS 1+q(28) y 5
WITH_VOLUME_ _ | _{° MIDPLANE
HEAT RELEASE
RATE Qv §-a ) 8
7777 " 7. 77777 7T 777777
BLACK WALL

F1G. 1. Turbulent gas layer.

than 0:7 and Pr; ! is 1-3. By virtue of this simpli-
fication

kn + pcey _
ko -
x [14+4K2y*2(1 —exp(—yt/AM)*]E

N

et =41+

2

Mei and Squire [ 12] account for the approach of
¢* to 1+ 009R, in the central regions of the
channel by dividing by 1+ by*, where b = 3-4,
The quantity y* is defined by

=S o
SR (EEEN(O RS

where
4)

and
(5)

With these relations conservation of energy
within the turbulent gas layer takes the form

d +dT d
=— — |+ (- . 6
This relation is subject to boundary conditions

TO0)=TQ20)=T,. W)

Integration of equation (6) and the observation
that the heat fluxes are zero at y = by virtue of
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the symmetry shows

ke I L e+ 05— 1) =0. ®)

dy
This expression, since gr is an integral term
shown below, is the governing integro-differen-
tial equation for the temperature.
The radiative heat flux in a symmetric channel
1s given by the following integral terms

n = | {Bu2Eq(r) - B2Eo(2rs, — 7)
+ | 2Ey(c, — t,) Bt,) dt,
[+

214y
— | 2E,(t,— ) B(t,)dt,} dv

where 1, is the spectral optical depth at the
location where g is desired, ¢, is any optical
depth in the channel, B is the Planck black body
spectral radiosity (power per unit area and
unit band width), and E, is the exponential
integral function of order n. Allowance for the
spectral variation of optical depth introduces
great complexity. However, it has been shown
that the above expression simplifies for the
channel geometry and for many common
molecular gases whose spectral variations can
be accounted for with exponential-winged bands.
From equation (25) of [10]

_ 0B(v,, T)
dr = Z Wy T
k=1
1
x J{At(m,k(z -y -y -
0

dT

Ay, | y* - y’*l)} ay* dy'*, )
where A} is the slab band absorptance
A¥@t)=1Int+ E,() +y + 3 — Ea(0), (10)

B(v, T) is the Planck radiosity at wavenumber v

2nhc?v?

B(v, T)= o

i (11)
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Ty, 1s the maximum optical depth for the half
channel width in the kth absorption band,

(12)

where p, is the partial density.of the absorbing
gas of concern, oy is the integrated intensity of
kth band, and w, is the exponential decay width.
The quantity y* is dimensionless distance

y*=y/6. (13)

Equation (9). as discussed in [10], is appro-
priate for narrow bands of overlapped lines so
that éB(v, T)/0T does not vary markedly with
v near the location v, of the kth band and is
written especially for a flat plate channel formed
by two black walls enclosing a gas with tempera-
ture symmetric about the midplane and con-
tinuous in temperature at the walls. It has also
been assumed that the temperature differences
are sufficiently small so that the properties
. p and o, and the derivative of the Planck
function #B(v,, T)/6T do not vary significantly
throughout the gas.

Equation (8) can be made dimensionless by
dividing by Q,0. The temperature is likewise
rendered dimensionless utilizing 0,6 divided by
a scale conductance k,e*(R,)/8. Further, the
length scale, already made dimensionless accord-
ing to equation (13) can be transformed to a
logarithmic coordinate more suitable for tur-
bulent transfer near a wall. The governing

integro-differential equation, equation (8),
becomes
dr*
DY g =1-y — [Ry/e*R) gk (14
where
s‘“(R,y*) -
* __ =
(R) Ve (15)
* T- Tw . 1
T = 65k (R3] (16
1
y¥z¥) = I—,[ez‘ -1],z*=In(1+ W* (17
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Ron=(3 0 BudD)/(kn/0), B,=0B(v, T)oT,
k=1

Af = A2ty ) (18)
- W,
qr = z “‘jl;g [A:(TH,R(Z e AR )
=T Ao
dT*
— Ay =y D] ow (19)
y
*

W, = __EOLBﬁ., (20)

Y. o B AL
k=1

The numerator of equation (18), offset by the
denominator of equation (20), is introduced
arbitrarily. The quantity R, can be interpreted
physically as a ratio of nongray radiation
conductance to molecular conductance. Note
that the Rosseland conductivity is not used,
because it has no meaning for a nonoverlapped
exponential-tailed band. The quantity ¥V is also
introduced arbitrarily, but may be set equal to
the product of the Von Karman constant and
turbulent Reynolds number. The larger is ¥, the
more the region near the wall is stretched by
the y* to z* transformation.

Equation (14) with equation (19) is a linear
integral equation in the temperature gradient
dT*/dz*. Note that it has a symmetric kernel.
The problem of simultaneous nongray radiation
and turbulent diffusion has thus been cast into
a form characteristic of pure radiation transfer,
for example, radiation exchange in an enclosure.
As is commonly done in such pure radiation
problems, the integral term can be closely
approximated by a summation of discrete
values, and the problem transformed to solving
a set of simultaneous linear algebraic equations.
As shown in the Appendix, equation (14)
becomes

'21 {6, ;DF + [Ram/e" (R)] 4, ;} P;=1—y;
=
i=12,....m

where P;is dT*/dz* at z* = z}.

(21)
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RESULTS

Tables 1 and 2 give results for the case of
wy and 1y , invariant with k. Values reported are
total, radiative, and convective heat fluxes at
the wall made dimensionless by dividing by
(T,.— T,) k,/5, where T, is the volume average

D. K. EDWARDS and A. BALAKRISHNAN

T: T,-T,

Figures 2-4 show the temperature profiles
between the wall and midplane for three different
values of turbulent Reynolds number. The
abscissa is z*/z*(y* = 1) in order to stretch the

(25)

Table 1. Effect of turbulent Reynolds number on dimensionless heat fluxes and
center temperature (parameters w, and Ty, invariant with k)

Ty = 50, A¥(21,) = 5682

Run/A* R,=100 R,=300 R,=1000 R,=3000

Nuy 845 19-59 538 1402
00 Nitg 00 00 00 00
Nug 845 19-59 53-8 140-2

TX/T* 1-1480 10948 10706 10595
Nuy 884 2001 542 1406

o1 Nug 037 042 046 048

Nug 847 1959 53-7 140-1

T*/T* 1-1486 10952 10707 110595
Nuy 12:52 238 582 144-7
" Nug 368 415 46 43
Nuc 884 1965 536 139:9

THT* 111542 1-0986 10721 1:0601
Nuy 486 611 974 1854
100 Nug 366 406 450 479
Nuc 120 205 524 1375

T*/T* 11883 1-1253 10848 1:0653
Nuy 399-8 4170 4677 5759
1000 Nug 3710 3847 4166 4540
Nuc 288 323 511 1219

T*/T* 12409 1:2046 111512 1-1039

temperature. The volume average temperature
was used, because it is the temperature appro-
priate for linearized optically thin radiation. It
is also very nearly the bulk average temperature
for flow when R, is large. The centerline tempera-
ture is also shown in dimensionless form.

_ 4904
Nup = T =T (22)
_ —qrl0)d
Nug = 30 (23)
Nug —qc(0)d (24)

T kT, — T,)

region near the wall. In order to compare the
profiles the same value of ¥ = 40 was used in
all three plots. The Mei and Squire divisor [12]
was not included in equation (2) for the results
plotted. Its effect is discussed below.

DISCUSSION

A number of interesting features emerge from
the solutions. In Table 1 it is seen that radiation
does contribute very markedly to the total
transfer when the radiation-conduction-mole-
cular-diffusion-conductance ratio R,, is large.
The radiation contribution grows nearly linearly
with R, and at high values of R,,, it dominates
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Table 2. Effect of maximum optical depth on dimensionless heat fluxes and center temperature (para-
meters ¢y, and Ty, invariant with k)

©
s
Y

08
0.2 04 086 1 10
1 L4 J

o
>
T

005 0.
» { !

08
/005 01 0.2 04 06 | 10
P 1 1 1 i1 i

DIMENSIONLESS TEMPERATURE
o
N

BASED UPON VOLUME AVERAGE TEMPERATURE, T,

NORMALIZED DISTANCE FROM WALL,y=y/8

o
n
T

R, = 1000
=S5 7y = 10 Ty = 100 1, = 1000
R/ A* A*21,) = 3380 A*(21y) =4073  AM2t) = 6376  AX27,) = 8678
Nuy 53-8 53-8 538 538
oo Nour 00 00 00 00
Nug 53-8 53-8 538 53-8
T*/T* 1-0706 1-0706 1-0706 1-0706
Nur 541 S4-1 54-2 54-2
o1 Nug 032 037 048 0-51
Nuc 53-8 537 537 53-7
TXT* 1-0706 10707 1-0708 1-0708
Nuy 569 574 583 586
o N 32 37 48 51
Nuc 537 537 535 53§
T*/T* 10710 10714 1-0723 10726
Nuy 85-4 90-1 99-1 101-2
100 Nug 318 368 471 49-4
Nug 536 533 520 517
Tx/TE 1-0754 1-0784 1-0865 1-0887
Nuy 3682 4110 4785 490-4
1000 Nup 3138 3578 4279 439-5
Nuc 544 532 50-6 509
TY/Tk “1-1042 111216 1-1574 1-1644
TH=50
1.4 — »
b 1.2 Al (27,)=568
7,=50 E. » 27y -/,
2k A%(2r,)=568 I = wi, AND Ty
o w & O INVARIANT WITH k
wy AND Ty ¢ a §
10 - INVARIANT WITH k Sw~ o8
gyt | .
- ¢ ' A=
2 o8- },‘_’é - Ram /#4210
l, . w>~ 06} /A‘ =100
o Rym /8, =10 @: -
: oe Rdm ,/A‘*ﬂOO g § '!_
= a8kt
' =5
£ iz
2
Q
[TV
;]
-3

* %/ NORMALIZED DISTANCE FROM WALL, yxy/8 N . ) ) |
o ‘ , . ‘ . %% 02 04 06 08 1o
o 02 04 06 08 10 TRANSFORMED DISTANCE FROM WALL, z1y)/ (1)
TRANSFORMED DISTANCE FROM WALL, 2'(y1/ (1) {v=40)
{v=40} Fi. 3. Temperature profiles for moderate turbulence
F1G. 2. Temperature profiles for low turbulence (R, = 100). (R, = 300).
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the total transfer. The radiation deposited in
the cold wall region does increase the convective
transport significantly at the lower values of
R,, but at the higher values the convective
Nusselt number based upon volume average
temperature actually appears to decrease some-
what with increasing radiation. Increasing tur-
bulance, measured by R,, increases markedly the
convective transport at the wall, but has a
lesser effect on the radiative transport, which
rises significantly, but at a much less rapid
rate.

'rH=50
Foo2 A%(2r,)=568
w
g -
: Lok wy AND TH,k
wE O INVARIANT WITH k __»"%
2 R, =0 z7
<< E —_ dm 4 .
G >osf 7’
% g | ’ ° *
o< . > ,’ Rdm /A‘ =0
= E E 4 *
82: 0.6 /. Rdm /As=IOO
Yy s
z § }I_ )
(o]
sat %4r /
>
wt 08
£z 005 01 02 04 0610
o % 02} L 1 1 i i ]
2 NORMALIZED DISTANCE FROM WALL,y=y/3
§ 1 1
0 i ]
@ 0 02 04 06 08 10
TRANSFORMED DISTANCE FROM WALL, z{y")/ (1)
(V=40)

F1G. 4. Temperature profiles for high turbulence (R, = 1000).

Table 2 shows that the radiation transfer
rises rapidly at first as 7y increases but then at a
slow rate when 1y becomes large. Unlike the
case for a gray medium, the nongray gas
radiation does not go to a maximum and then
decrease with increasing ty, but continues to
increase slowly.

The figures show that increasing turbulence
causes a blunter profile with sharper gradients
near the wall. The effect of radiation is to make
the temperature profiles less blunt, however.
Because the plots are based upon equal volume
average temperature, as the profiles become less
blunt the midplane temperature must rise to
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maintain the equality. But the centerline tem-
perature rises only slowly compared to the great
increase in wall transfer, as may be seen in the
tables. Recall that the region near the wall is
stretched and that near the center compressed
when z* is used.

The trends noted in the data suggest a simple
correlation good for engineering estimates when
detailed calculations are not warranted. At
the larger values of R,, it appears that the usual
engineering approximation of merely adding
radiative and convective fluxes at the wall is
of value. However, the effective emissivity of
the gas is reduced by the presence of the tempera-
ture gradient near the wall, that is, the effective
emissivity is not as large as the isothermal gas
emissivity. To account approximately for this
latter factor, one regards the core of the gas as
isothermal and a linear temperature gradient
existing in a layer 4, thick near the wall. The
effective emissivity of such a temperature pro-
file was developed by [10]. It is consequently
proposed that

Nur = Nuc + Ra 3, (Wi/AD) C*(1p, 1. Tar. )

(26)
where
1
C*rg,x TpLk) = P [S*(2tg,1)
- S*(ZTH,k — Tp k) — S*(‘CBL, ] (27
o pé
TeL,k = LP‘LL- (28)
Wy

The quantity S* is the zeroth moment of A¥
developed in [10]. The Appendix contains the
explicit formula for it. For w, and 74 ; invariant
with k, equation (26) reduces to

Nur = Nuc + (Ry/A ¥215)) C¥(tg, t51) . (29)

The thickness of the region near the wall oy,
would be expected to decrease with increasing
R, and increase with R, (which has a Prandtl
number-like effect on thickening the wall layer).
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Recall that Pr,Pr;! =10 was the case in-
vestigated. The correlation found was

51 = O = 066 R-O4T1 + (Ryn/ AR

(30)

The correlation represented by equations (29)
and (30} was found to fit the 32 calculated
points in Tables 1 and 2 within 26 per cent rms.
The worst discrepancy was 69 per cent in one
case.

To put the values of R, and Nu in perspective,
we may compare them with turbulent channel
flow. Of course, in channel flow the temperature
Tis a function of both a streamwise variable x
or z and a transverse variable y or r, and no
volume heat source truly exists. However,
Thorsen [13] has shown for pipe flow that
neglecting the x-variation of T introduces
only a one per cent error in predictions of the
temperature field, even when radiation is a
dominant mode of heat transfer. Furthermore,
the streamwise convective term pc,VoT/0x
plays the role of a nearly-constant volume heat
source at large values of Rej, and at values of x
beyond the thermal entrance region. Thus we
expect that Nu from the present analysis for
Ry, = 0 will be in good agreement with, for
example, the Dittus-Boelter equation for turbu-
lent flow, when Re,, is greater than approxi-
mately 10%

Nuy, = 0:023 Re}8pro33
Nuy = § Nuy, = 0:00575 Red 8 Pro33,

In order to make the comparison R, is related to
Re,, by equation (4)

I

When the skin friction factor vs Rep, is taken
from Schlichting [14], it is found that R, = 100
correspondsto Rep,, = 6000,R, = 300toRe,, =
21000, and R, = 1000 to Rej,, = 82000. At
these values and for Pr = 1 the Dittus-Boelter
equation yields Nu, = 6, 17 and 49 respectively,
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compared to 84, 196 and 53-8 respectively
from Table 1 for R, = 0. The expected approxi-
mate correspondence is exhibited.

As a further aid to putting the values in
perspective, a gas suchas CO, may be considered.
At a temperature of 1000°K and for a layer of
half width § = 50cm, the quantity R, is
approximately 569, using values for 6 bands
given in [15]. The A/A, correction recommen-
ded there was not applied; thus the calculated
values of R,,, are somewhat low. Of course, the
values of 14, and w, vary considerably with
k = 1,6 for this real gas, and not all the bands
have overlapped lines. For the strongest band at
43 u, 1, = 833, and for the other major con-
tributor to R,,, at 2:7 i, 7y = 17-3. Another point
of interest is that a Rep, of 82000 (R, = 1000)
corresponds to a velocity of approximately
3 m/s.

As seen above for the case of CO,, polyatomic
gases have a number of absorption bands, and
while the several values of w, may often be
nearly equal, the values of 14, seldom are.
Furthermore, the relative values of 7, vary
markedly with temperature. This multiplicity
of possible values makes it difficult to para-
meterize the problem. However, it is felt that
equations (26) and (30) will give adequate results
for engineering estimates.

In order to make an approximate calculation.
which can be accomplished even by hand,
values of ey, 14 , and v, from [15] are used. The
quantity R, is evaluated according to equation
(18) and, the value of R, is found as explained
below equation (30). These values together
with a W,-weighted average A* are used in
equation (30) to find ;. Then the actual values
of w, and 74, and the value of 55, are used in
equation (27} and (28) to find the values needed
for equation (26). This procedure is expected to
work well when the gas emission is dominated
by one or more strong bands with 74, > 5,
since the correlation equation (30) was verified
for values of 75 > 5. This expectation is borne
out by the values shown in Table 3.

The results of detailed machine calculations
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based upon equation (21) and the simple
correlation calculations agree well, particularly
for R, = 300.

Note that Nug divided by R,,, is a number less
than one which represents the transmission
factor for the cold boundary layer. The difference
between one and the transmission factor may be
thought of as the attenuation or blockage of the
hot gas radiation by the cold boundary layer.

D. K. EDWARDS and A. BALAKRISHNAN

but reduces the centerline value of ¢* to nearly
1 + 0-09 R,. This value is only 23 per cent as
large as that obtained by using the Deissler
expression without modification.

The results obtained for Nuy with the Mei and
Squire divisor were decreased only 5 per cent
from those without it. Values of Nu. were
reduced somewhat more, particularly at low
R,. These values were 12-26 per cent lower at

Table 3. Comparison of exact results with correlation. CO, gas at P = 1 atm

Gas Channel Calculated  Turbulence Exact Correlation
temp. half thickness values of parameter result result
T ] Ax Rym R, Nug Nug

(°K} (m)
500 0-10 646 175 100 102 102
300 11-5 11-3
1000 128 123
3000 13-8 132
0-50 736 119 100 653 627
300 707 688
1000 79-0 73-6
3000 864 79-1
1000 010 501 789 100 565 54-1
300 60-2 585
1000 64-7 62:6
3000 680 658
0-50 610 569 100 363 326
300 375 372
1000 402- 403
3000 436 427
1500 0-10 408 132 100 106 99-2
300 110 106
1000 116 112
3000 120- 117
0-50 509 1037 100 756 675
300 768 743
1000 800 795
3000 848- 842

The magnitude of the attenuation may be seen
to be as large as 50 per cent in Tables 2 and 3.

In order to evaluate the effect of center-
channel eddy diffusivity upon the transfer rates,
the results in Tables 1 and 2 were computed
applying the Mei and Squire [12] divisor to
equation (2). The Mei and Squire divisor leaves
the wall values of eddy diffusivity unchanged

R, = 3000 and 100 respectively. The fact that
the values of Nup were affected but little
strengthens confidence in the correlation, equa-
tion (30), for the radiative transfer through a
turbulent wall layer. It is felt that the correlation
could be applied to circular ducts as well, by
using 1y equal to 7 of that obtained based upon
the mean beam length, since the geometric mean
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beam length for a channel is four times the
channel half-width.

A final point deserving discussion may be the
validity of the exponential band representation
of molecular gases. Comparison of values of
band absorption from single-line-of-sight ob-
servations in isothermal gases has indicated a
probable accuracy of 110 per cent [15].
Emission along a single line of sight in a non-
isothermal gas has also been found to be in good
agreement [16], when a scaling scheme was
used to account for variations in o, and w,
[16-18]. Discrepancies were found to be on
the order of 10-20 per cent. As far as the ability
of the band model to predict correctly the
divergence of g so that temperature profiles are
accurate, only the indirect evidence of the
agreement obtained by Schimmel, Novotny
and Olsofka [19] is available.

SUMMARY AND CONCLUSIONS

Simultaneous turbulent diffusion in a layer
of gas enclosed by parallel black walls was
solved for the case of exponential-winged bands
with overlapped lines. The results found were
well correlated by equations (26) and (30). These
equations are sufficiently simple in application
that hand calculations may be made. For the
conditions of large R,, and moderate R, typical
of industrial furnace operation, the radiation
transport was found to be the dominant mode
of transport at the wall, but the turbulence
played an important part in thinning the cold
layer of gas near the wall so that the radiation
was not unduly attenuated. Attenuation of
radiation by the cold wall layer was found to
range up to 50 per cent, when 1 and R, were
large at R, = 1000.
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APPENDIX
Quadrature for Radiant Flux

In order to obtain a discrete ordinate representation for
the energy equation it is necessary to divide the z* scale into
a number of points z¥ and represent the integral over
dT*/dz'* as a wéighted sum of the temperature gradients at
those points. Let

zF = (i - DAz*,

where

Azt =

ta

1
In(1 + V),
(m—1)

and
P, =(dT*/dz¥*), - .
Denote a term in the summation over all bands in equation

(19) as

1
ahy = | [AMTa a2 — y* = y9) — A2ag|y* — v*))
[

dT* dz'*
X —
dz’* dy'*

dy'*.

Let the integral be replaced by a sum, using a modified
trapezoidal rule for simplicity,

m »
Gk = Z{ HA:‘ (tg,2 —~ y¥ = ¥y*)
j =

20 -1

1 dz¥
— Axgalyt — vy Py <*>
(TH,k|y y |] y 2[, ldy* o

D. K. EDWARDS and A. BALAKRISHNAN

The remaining integral terms may be evaluated in terms
of the zeroth moment of the slab band absorptance, derived
previously [10]

t
SH) = | AH)dt' = eIt + y — 3]
]

+ [1 =~ E4(0] — [§ — E4(0].

Changing variable of integration from y* to (2 — y* — y'*)
for the first part and to (y* — y'*) or (y'* — y¥) for the second
part gives

*
Ry

Fiow= | (AN = yF =y ") — Ayt —y*)] dy*

Bt
1
= — [8* (1 2= yF =y, ) =S¥y 2— ¥ - 31))]

TH, k

S*tg,e|yE — yF) = S*galyio 1 — yE)

dz*
o= ()
Y/

and collecting like terms gives

Denoting

where
Ai.j = %(Fi,j"' Fi,j+ I)Cj
A= %Fi.zcl
Ai,m=%Fi,mcm
Fiy= Y WF Ak
k=1

When the expression for g% is substituted into equation (14),
equation (21) results, where J, ; is understood to be unity for
i = j and zero otherwise.

TRANSFERT PAR RAYONNEMENT NON GRIS DANS UNE COUCHE GAZEUSE
TURBULENTE
Résumé—L’équation d’énergie décrivant le transfert par rayonnement non gris et la diffusion simultanée
par turbulence dans une couche de gaz entourée de parois noires parall¢les est développée en une équation
intégrale linéaire avec un noyau symétrique. Les solutions pour les profils de température et de flux ther-
mique par convection et rayonnement sont strictement valables pour une source de chaleur & volume
constant, mais constituent une bonne approximation de celles obt nues pour un écoulement turbulent
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établi. Les résultats montrent I'effet de la self-absorption par un gaz froid au voisinage de la paroi et le

couplage entre le rayonnement non gris et la diffusion turbulente. Une relation entre les résultats, en

général sous forme adimensionnelle, rend possible le calcul rapide des effets d’écran que joue la couche
limite turbulente au rayonnement d’un gaz non gris émis par un gaz commun.

WARMEUBERGANG DURCH NICHT GRAUE STRAHLUNG IN EINER
TURBULENTEN SCHICHT

Zusammenfassung—Die Energiegleichung, die den Wirmeiibergang durch nicht-graue Strahlung und
gleichzeitige Diffusion in einer Gasschicht zwischen zwei parallelen schwarzen Winden beschreibt, wird
in eine lineare Integralgleichung mit symmetrischem Kern umgeformt. Die Losungen fiir die Temperatur-,
Konvektions- und Wirmestrahlungsprofile sind fir konstante Warmequellendichte streng giltig; sie
sind gute Ndherungen fiir jene mit ausgebildeter turbulenter Strémung. Die Ergebnisse zeigen den Effekt
der Selbstabsorption bei einem kalten Gas in der Nidhe der Wand und die Kopplung zwischen nicht-grauer
Strahlung und turbulenter Diffusion. Die Korrelation der Ergebnisse in allgemeiner, dimensionsloser
Form macht es méglich den Effekt der Blockierung der nicht grauen Strahlung durch turbulente Grenz-
schichten bei einem beliebigen Gas aus einer Reihe gewdhnlicher Gase einfach zu berechnen.

JYYUCTBIA NEPEHOC B TYPBVJEHTHOM CJOE HECEPOI'O TA3A

AHHOTAIMS— Y paBHeHNEe SHEPruy, ONMCHBAIONEe IYYUCTHIE TMEpeHOC ¢ OXHOBpeMeHHOU
TypGyneHTHOt Auddysneit B Ccl0e Heceporo MOJEKYIAPHOTo rasa, OIPamIeHHOTO
napallielbHEIMI YePHBIMHM CTEHKaMH, npeo0pasyeTcA B JIMHetHOe MHTerpajibHOe YpaBHEHHe
¢ CHMMETPUYHBIM SIApOM, PerieHns A npoduieit TeMnepaTypsl, KOHBEKTUBHOTO U JIy4HCTOTO
TENIOBEIX IIOTOKOB CTPOTrO CIPABEANUBBL [JIA WMCTOYHMKA TeIJIa IOCTOSHHOrO 00BéMa U
ABJAKTCA XOPOUIMMM INPUOIMKEHUAMHM B CJy4ae pasBUTOr0 TYpPOYJEHTHOrO MOTOKA.
TMony4yeHHBIEe pe3yJBTATHL BCKPHIBAOT 3P@QEKT CaMOIOrITOLIEHHA XOJOTHBIM Ta3oM BOIM3H
CTeHKH U CBA3H HECEPOTo U3IydeHMA U TypOyieHTHol guddysuu. Koppenanua pesynsratoB
B ofbmeil 6eapasMepHOi GopMe MO3BOJIAET OMpENeTUTh 3PdeKTs OIOKUPOBAHUA U3IYUYEHHA
TypGyJAEHTHOr0 NOTPAaHUYHOTO CIOA HECeporo rasa Ha IpuMepe Jo6oro oGEIYHOTO rasa.
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